
Computational Research Division

Discrete	 Solvers	 at	 the	 Exascale	
Esmond	 G.	 Ng	

Lawrence	 Berkeley	 National	 Laboratory	
	

SIAM	 AN14	

Computational Research Division

What	 are	 discrete	 solvers?	

q  Nonlinear equations solvers
q  Linear equations solvers
q  Eigen solvers
q  Time integrators

q  Focus on linear equations solvers

Computational Research Division

What	 are	 the	 exascale	 challenges?	

q  High degree of parallelism
q  Algorithmic scalability on heterogeneous systems
q  Deep memory hierarchy – data movement or communication
q  Limited memory size per code
q  Resilience

q  The DOE report on Applied Mathematics Research for Exascale
Computing identified a number of applied math research areas
that aim at tackling these challenges for discrete solvers
§ We will provide some examples to illustrate why and how those areas

might be appropriate at exascale

Computational Research Division

Multiple-‐precision	 algorithms	

q  Facts …
§  Lower precision ops are often faster than higher precision ops
§  Lower precisions require less memory ==> require less data movement

q  Use of multiple precisions is not new …
§  E.g., Kurzak & Dongarra (Concurrency and Computation: Practice &

Experience, 2007)
�  Gaussian elimination in single precision and iterative refinements in double

precision
§  But may become more important in exascale for data movement and

limited memory reasons

q  Open questions …
§  Determining when lower/higher precisions should be used in different

parts of other types of matrix algorithms
§  Reliability, robustness, accuracy of multi-precision algorithms?

Computational Research Division

Data	 compression	

q  Matrix computation is data intensive
==> require lot of data movement/communication

q  Example …

§  One of the recent active research areas has focused on using some
form of data compression to improve the performance of certain
classes of matrix solvers

§  For matrices arising from the solution of PDEs with smooth kernels,
off-diagonal blocks in the LU factorization often have low rank
�  Gu, Li, Xia, …
� Weisbecker, …

Computational Research Division

Data	 compression	 in	 sparse	 matrix	 factorization	

q  General idea …
§  Apply SVD to a rank-deficient

off-diagonal block
==> obtain a compact representation

§  Can apply the idea recursively and
result in a hierarchical structure

q  Advantages …
§  Lower storage requirements but essentially maintaining same accuracy
§  Result in less communication because the compact representation has

to move less data
§  Also often require fewer operations overall (even though additional

work is required to compute the compression)

Computational Research Division

Data	 compression	 in	 sparse	 matrix	 factorization	

q  Test problem (Li): 3D seismic imaging – Helmholtz equations up to
6003 cubic grids (216M equations)
�  16,000+ cores: 2x faster, uses 1/5 of memory vs a sparse direct solver

based on Gaussian elimination

q  Open questions …
§  Generalizations to other classes of matrices?
�  For other matrices, can use the approach to compute approximations,

which can then be used as preconditioners

§  Data compression in other matrix algorithms?
§  Complexity analysis - Trade off between compression cost and possible

reduction in memory?
§  Robustness, reliability, accuracy?

Computational Research Division

Randomization	 and	 Sampling	

q  Randomized algorithms have gained quite a bit of popularity in
recent years.
§  Not entirely because of exascale computing
§  But some interesting ideas here

q  Example …

§  Consider an m x n matrix A, where m and n are very large.
§  Suppose we want to get a low-rank approximation of A.
�  Best rank-k approximation can be obtained using SVD
�  But require access to the entire matrix A

Computational Research Division

Randomized	 algorithms	

q  Friedland, Mehrmann, Miedlar, Nkengla (2011) …

§  Choose p and tmax

§  Repeat tmax times
�  Generate index sets I and J of size p at random
�  Determine numerical rank rIJ of A(I,J)
�  Compute πIJ = product of the first rIJ singular values of A(I,J)

§  Consider those A(I,J) for which rIJ are the largest and pick the one such
that πIJ is the largest. Compute the best rank-k approximation of this
particular A(I,J) … denote by AIJk
�  Let C = A(:,J) and R = A(I,:)
�  Let B be the pseudo-inverse of AIJk
�  Use CBR as a rank-k approximation of A

Computational Research Division

Randomized	 algorithms	

q  Does it really work?
§  Apparently work on matrices from image processing
§  Can be extended to tensors

q  Advantages …
§  Do not need entire A; just need to be able to sample A
§  Completely parallel
�  Can start different sequences of samples in parallel
�  Can try different tmax

q  Open questions …
§  Other matrix problems? Other scientific problems?
§  Other randomization/sampling techniques?
§  Robustness, reliability, accuracy?
§ What if the approach fails?

Computational Research Division

Communication	 reduction	

q  Communication is becoming more and more expensive relative to
computation
§  Either moving data within the local memory system or across the

network in a distributed memory setting

q  Important to design algorithms to reduce the amount of
communication as much as possible

q  Example …
§  QR factorization of a tall, skinny matrix

Computational Research Division

Communication	 reduction	 in	 QR	 factorization	

q  Demmel, Grigori, Hoemmen, Langou (2008)

§  Consider computing the QR factorization
of an m x n dense matrix A, where m >> n

§  TSQR (Tall Skinny QR):
�  Orthogonal reductions based on a binary

tree
�  Partition rows of A into blocks and

compute QR factorization of each block
�  Reduce the triangular factors in a

pairwise fashion
�  Then continue the reduction repeatedly

until only one triangular factor is left

A =

A
11

A
21

A
31

A
41

!
A

s−3

A
s−2

A
s−1

A
s

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

→

R
11

R
21

R
31

R
41

!
R

s−3,1

R
s−2,1

R
s−1,1

R
s,1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

Computational Research Division

Communication	 reduction	 in	 QR	 factorization	

A =

A
11

A
21

A
31

A
41

!
A

s−3

A
s−2

A
s−1

A
s

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

→

R
11

R
21

R
31

R
41

!
R

s−3,1

R
s−2,1

R
s−1,1

R
s,1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

→

R
12

R
32

!
R

s−3,2

R
s−1,2

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

→

R
13

!
R

s−3.3

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
→"→ R

q  New?
§  Maybe … proposed in 80’s for

sparse matrix computation

q  More storage if Q is needed;
more computation

Computational Research Division

Communication	 reduction	 in	 QR	 factorization	

q  Complexity …

§  P processors,
1D mapping,
counting along
critical path

§ m = 100,000,

time in seconds

TSQR ScaLAPACK

messages log(P) 2n log(P)

words ½[n2 log(P)] ½[n2 log(P)]

flops (1/P)[2mn2] + ⅔[n3 log(P)] (1/P)[2mn2] + ½[n2 log(P)]

n/ P⎡
⎢

⎤
⎥ = 50,

P TSQR ScaLAPACK

1 9.68 12.63

2 15.71 19.88

4 16.07 19.59

8 11.41 17.85

16 9.75 17.29

32 8.15 16.95

64 9.46 17.74

Computational Research Division

Synchronization	 reduction	

q  Synchronizations can be become bottlenecks
§  Known for a long time
§  But may become worse under exascale

q  Example …

§  The conjugate gradient algorithm
�  An iterative method for solving sparse system of

linear equations
�  Rely on matrix-vector multiplication and inner

products

γ
k
= r

k
,r

k

β
k
= γ

k
/γ

k−1

p
k
= r

k
+ β

k
p

k−1

v
k
= A p

k

σ
k
= p

k
,v

k

α
k
= γ

k
/σ

k

x
k+1

= x
k
+α

k
p

k

r
k+1

= r
k
−α

k
v

k

one step of
the conjugate

gradient algorithm

Computational Research Division

q  Also not new …
§  D’Azevedo, Eijkhout, Romine

(1993)
�  The two are mathematically

equivalent

�  Based on identities in conjugate
gradient

q  There are other variants, but
not all have the same
numerical behavior

One	 step	 of	 the	 conjugate	 gradient	 algorithm	

γ
k
= r

k
,r

k

β
k
= γ

k
/γ

k−1

p
k
= r

k
+ β

k
p

k−1

v
k
= A p

k

σ
k
= p

k
,v

k

α
k
= γ

k
/σ

k

x
k+1

= x
k
+α

k
p

k

r
k+1

= r
k
−α

k
v

k

s
k
= Ar

k

γ
k
= r

k
,r

k

δ
k
= r

k
,s

k

β
k
= γ

k
/γ

k−1

p
k
= r

k
+ β

k
p

k−1

v
k
= s

k
+ β

k
v

k−1

σ
k
= δ

k
− β

k

2σ
k−1

α
k
= γ

k
/σ

k

x
k+1

= x
k
+α

k
p

k

r
k+1

= r
k
−α

k
v

k

Computational Research Division

Comm/Sync	 avoiding/reducing	 algorithms	

q  Notes …
§  Some of the ideas in some of these algorithms are not entirely new,

but being re-discovered
§  It’s often the case that such algorithms may require more memory

and/or more computation
§  Some algorithms have communication/synchronization complexities

that match lower bounds (Demmel’s group)
§  In some cases, the algorithms may not be as stable as conventional

algorithms

q  Open questions …
§  New algorithms that require less communication/synchronization?
§  Can an existing algorithm be reformulated to reduce communication/

synchronization?
§  Numerical behavior of such algorithms?

Computational Research Division

Fine-‐grained	 parallel	 algorithms	

q  Exascale computing promises high degree of parallelism
q  Fine-grained parallel algorithms for matrix problems?
q  Probably need to come up with out-of-the-box ideas

q  Example …
§  Compute an incomplete LU factorization
§  Traditional approaches – incomplete version of Gaussian elimination
§  Chow (2014)
�  All nonzero entries of L and U are computed in parallel and asynchronously
�  Let S be the desired sparsity pattern of L+U

Computational Research Division

Fine-‐grained	 ILU	

q  Compute

subject to

q  This results in

which is just a nonlinear equation of the form x = G(x)
§  Starting with an initial guess of L and U, one can iterate until

convergence
§  In the extreme case, each Lij/Uij can be assigned to one processing

unit and computed asynchronously, leading to a very fine-grained
parallel algorithm

 Lij
, i > j,(i, j) ∈S , U

ij
, i ≤ j,(i, j) ∈S

L

ik
U

kj
= A

ij
,(i, j) ∈S

k=1

min(i,j)

∑

L
ij
= 1

U
jj

A
jj
− L

ik
U

kj
k=1

j−1

∑⎛

⎝⎜
⎞

⎠⎟
, i > j

U
ij
= A

ij
− L

ik
U

kj
k=1

i−1

∑ , i ≤ j

Computational Research Division

Fine-‐grained	 parallel	 algorithms	

q  Results …
§  See Hittinger’s talk

q  Advantages …
§  Since L, U are incomplete factors, really no need to compute them

accurately ==> just a few iteration may be enough
§  Possibility of exploiting a lot of cores

q  Open questions …
§  Similar fine-grained algorithms for other matrix problems?
§  Techniques for solving the nonlinear equations?
�  Converge to the desired solution?

Computational Research Division

Resilience	

q  Resilience is concerned with dealing with and recovering from
faults

q  Example …
§  Suppose we are solving a linear system

§  Suppose there is a fault and x1 needs to be recovered
§  Assume that x2 is known and the value is trustworthy
§  How can x1 be recovered?

A
11

A
12

A
21

A
22

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

x
1

x
2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

b
1

b
2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Computational Research Division

Resilient	 linear	 solvers	

q  Langou, Chen, Bosilca, Dongarra (2007)
§  Linear interpolation: Solve A11 x1 = b1 – A12 x2

§  A-norm of forward error associated with iterates computed by
restarted CG or PCG is monotonically decreasing

q  Giraud et al (2014)
§  Least squares interpolation

§  Solve for x1 as a least squares problem
§  Monotonic decrease of residual norm of minimal residual Krylov

subspace methods after restart

A
11

A
21

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
x

1
=

b
1

b
2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
−

A
12

A
22

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
x

2

Computational Research Division

Resilient	 linear	 solvers	

q  Techniques can be extended to multiple faults
q  Similar ideas can be applied to eigenvalue problems

q  Open problems …
§  Resilient algorithms for other matrix problems?
§  Numerical behavior of such algorithms?
§ What to do if recovery fails?

Computational Research Division

Summary	

q  Challenges along the path to exascale …
§  High degree of parallelism
§  High communication & synchronization overhead
§  Deep memory hierarchy
§  Limited memory
§  Resilience

q  What we need to overcome these challenges …
§  Some existing approach may evolve
§  Re-visit old ideas
§  Need new and out-of-the-box ideas

Computational Research Division

Summary	

q  Research opportunities …
§  Fine-grained parallel algorithms
§  Communication and synchronization avoiding/reduction algorithms
§  Algorithms based on randomization and sampling
§  Multiple-precision algorithms
§  Use of data compression
§  Resilient algorithms

q  One of the common themes …
§  Robustness, reliability, accuracy

